organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Dipentylamino-4-(4-methoxybenzylidene)-1-phenyl-1H-imidazol-5(4H)-one

Rui Ma,^a Zhong-Ying Song,^b Yan Liu,^b Yi-Qiong Bai^b and Feng Bao^b*

^aDepartment of Materials Science and Chemical Engineering, China University of Geosciences, Wuhan 430074, People's Republic of China, and ^bDepartment of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: baofengstorm@126.com

Received 22 June 2007; accepted 23 June 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.063; wR factor = 0.183; data-to-parameter ratio = 14.4

In the title compound, C₂₇H₃₅N₃O₂, one of the pentyl side chains is ordered and the other is highly disordered [the occupancies for the major and minor components are 0.52 (1) and 0.48 (1), respectively]. The dihedral angles between the mean planes of the central C_3N_2 ring and the pendant phenyl and methoxybenzene rings are 88.30(17) and $9.08(17)^{\circ}$. respectively. A weak intramolecular C-H···N interaction may help to establish the near planarity of the central and methoxybenzene rings.

Related literature

For a related structure, see: Sun et al. (2006). For the synthesis, see: Ding et al. (2001).

Experimental

Crystal data

C ₂₇ H ₃₅ N ₃ O ₂	$\gamma = 102.044 \ (2)^{\circ}$
$M_r = 433.58$	V = 1251.96 (18) Å ³
Triclinic, P1	Z = 2
a = 9.4091 (8) Å	Mo $K\alpha$ radiation
b = 11.4405 (9) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 11.9354 (10) Å	T = 292 (2) K
$\alpha = 90.080 \ (2)^{\circ}$	$0.20 \times 0.10 \times 0.10$ mm
$\beta = 94.746 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer Absorption correction: none 10980 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.063$	83 restraints
$wR(F^2) = 0.183$	H-atom parameters constrained
S = 0.82	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
4871 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
339 parameters	

4871 independent reflections 1734 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.085$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C6−H6···N1	0.93	2.39	3.037 (4)	127

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors thank the Central China Normal University and the China University of Geosciences for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2457).

References

- Bruker (2001). SAINT, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ding, M.-W., Xu, Z.-F., Liu, Z.-J. & Wu, T.-J. (2001). Synth. Commun. 31, 1053-1057
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sun, S.-F., Ma, R.-M. & Ng, S. W. (2006). Acta Cryst. E62, o2090-o2091.

Acta Cryst. (2007). E63, o3336 [doi:10.1107/81600536807030668]

2-Dipentylamino-4-(4-methoxybenzylidene)-1-phenyl-1H-imidazol-5(4H)-one

R. Ma, Z.-Y. Song, Y. Liu, Y.-Q. Bai and F. Bao

Experimental

The compound was synthesized according to a reported procedure (Ding *et al.*, 2001) and yellow blocks of (I) were grown from a dichloromethane/ diethyl ether solution (1:1 v/v) in about 75% yield. Analysis calculated for C₂₇H₃₅N₃O₂: C 74.79, H 8.14, N 9.69%; found: C 74.85, H 8.36, N 9.79%.

Refinement

It is analogous to the examples (Sun *et al.*, 2006), the pentyl chain (C18 to C12) is disordered over two positions; the occupancy factors refined to 0.52 (1):0.48 (1). The pairs of 1,2-related and 1,3- related distances were restrained to be equal within 0.01 Å. The H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

2-Dipentylamino-4-(4-methoxybenzylidene)-1-phenyl-1H-imidazol-5(4H)-one

Crystal data	
C ₂₇ H ₃₅ N ₃ O ₂	Z = 2
$M_r = 433.58$	$F_{000} = 468$
Triclinic, PT	$D_{\rm x} = 1.150 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 9.4091 (8) Å	Cell parameters from 1232 reflections
<i>b</i> = 11.4405 (9) Å	$\theta = 2.6 - 19.1^{\circ}$
c = 11.9354 (10) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\alpha = 90.080 \ (2)^{\circ}$	T = 292 (2) K
$\beta = 94.746 \ (2)^{\circ}$	Block, yellow
$\gamma = 102.044 \ (2)^{\circ}$	$0.20\times0.10\times0.10\ mm$
$V = 1251.96 (18) \text{ Å}^3$	

Data collection

Bruker SMART CCD diffractometer	1734 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.085$
Monochromator: graphite	$\theta_{\text{max}} = 26.0^{\circ}$
T = 292(2) K	$\theta_{\min} = 1.7^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: none	$k = -14 \rightarrow 14$
10980 measured reflections	$l = -14 \rightarrow 14$
4871 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.063$	H-atom parameters constrained
$wR(F^2) = 0.183$	$w = 1/[\sigma^2(F_o^2) + (0.0792P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.82	$(\Delta/\sigma)_{\text{max}} = 0.001$
4871 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
339 parameters	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
83 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.3373 (4)	-0.0641 (3)	0.0797 (3)	0.1419 (15)	
H1A	0.4238	-0.0957	0.0775	0.213*	
H1B	0.2829	-0.0752	0.0075	0.213*	
H1C	0.2784	-0.1050	0.1354	0.213*	
C2	0.4595 (4)	0.0944 (3)	0.2069 (3)	0.0871 (9)	

C3	0.5044 (4)	0.0181 (3)	0.2825 (3)	0.0984 (10)	
H3	0.4800	-0.0639	0.2682	0.118*	
C4	0.4948 (3)	0.2159 (3)	0.2300 (3)	0.0904 (9)	
H4	0.4625	0.2683	0.1792	0.108*	
C5	0.5858 (4)	0.0625 (3)	0.3799 (3)	0.0947 (10)	
Н5	0.6155	0.0090	0.4308	0.114*	
C6	0.5773 (3)	0.2601 (2)	0.3273 (3)	0.0832 (9)	
H6	0.6012	0.3422	0.3410	0.100*	
C7	0.6254 (3)	0.1840 (2)	0.4055 (2)	0.0731 (8)	
C8	0.7086 (3)	0.2258 (3)	0.5116 (2)	0.0807 (8)	
H8	0.7259	0.1663	0.5607	0.097*	
C9	0.7640 (3)	0.3391 (3)	0.5486 (2)	0.0752 (8)	
C10	0.8344 (3)	0.3676 (3)	0.6628 (3)	0.0859 (9)	
C11	0.8180 (3)	0.5311 (3)	0.5639 (2)	0.0794 (8)	
C12	0.9303 (4)	0.5560 (2)	0.7692 (2)	0.0768 (8)	
C13	0.8467 (4)	0.5797 (3)	0.8493 (3)	0.1260 (14)	
H13	0.7455	0.5582	0.8379	0.151*	
C14	0.9134 (6)	0.6367 (4)	0.9495 (3)	0.1468 (18)	
H14	0.8568	0.6538	1.0052	0.176*	
C15	1.0587 (7)	0.6665 (3)	0.9650 (3)	0.1258 (15)	
H15	1.1035	0.7024	1.0325	0.151*	
C16	1.1403 (5)	0.6449 (3)	0.8832 (4)	0.1293 (14)	
H16	1.2412	0.6694	0.8933	0.155*	
C17	1.0779 (4)	0.5880 (3)	0.7863 (3)	0.1041 (11)	
H17	1.1359	0.5708	0.7317	0.125*	
C18'	0.8293 (7)	0.7435 (5)	0.6198 (5)	0.087 (2)	0.48
H18C	0.8159	0.7106	0.6939	0.104*	0.48
H18D	0.7496	0.7828	0.5982	0.104*	0.48
C19'	0.9726 (10)	0.8314 (6)	0.6210 (8)	0.125 (3)	0.48
H19C	1.0468	0.7937	0.6578	0.150*	0.48
H19D	0.9954	0.8440	0.5436	0.150*	0.48
C20'	0.9882 (14)	0.9510 (7)	0.6752 (8)	0.138 (4)	0.48
H20C	1.0740	1.0027	0.6492	0.165*	0.48
H20D	0.9047	0.9834	0.6476	0.165*	0.48
C21'	1.0005 (15)	0.9595 (9)	0.7999 (6)	0.179 (6)	0.48
H21C	1.0571	0.9026	0.8288	0.215*	0.48
H21D	0.9035	0.9350	0.8251	0.215*	0.48
C22'	1.0690 (16)	1.0806 (11)	0.8523 (10)	0.127 (5)	0.48
H22D	1.0833	1.0734	0.9324	0.191*	0.48
H22E	1.0059	1.1352	0.8350	0.191*	0.48
H22F	1.1614	1.1100	0.8228	0.191*	0.48
C18	0.9372 (8)	0.7502 (5)	0.5874 (6)	0.098 (2)	0.52
H18A	0.9942	0.7232	0.6497	0.118*	0.52
H18B	1.0036	0.7828	0.5318	0.118*	0.52
C19	0.8732 (10)	0.8431 (6)	0.6270 (8)	0.123 (3)	0.52
H19A	0.8397	0.8795	0.5592	0.148*	0.52
H19B	0.7857	0.8015	0.6590	0.148*	0.52
C20	0.9297 (13)	0.9400 (13)	0.7014 (16)	0.240 (10)	0.52
H20A	0.9033	1.0073	0.6617	0.288*	0.52

H20B	0.8665	0.9254	0.7623	0.288*	0.52
C21	1.0651 (13)	0.9887 (14)	0.7559 (12)	0.208 (6)	0.52
H21A	1.1263	1.0165	0.6957	0.249*	0.52
H21B	1.0999	0.9205	0.7870	0.249*	0.52
C22	1.108 (2)	1.0790 (17)	0.8408 (15)	0.242 (10)	0.52
H22A	1.1578	1.1512	0.8086	0.363*	0.52
H22B	1.1710	1.0534	0.8985	0.363*	0.52
H22C	1.0224	1.0937	0.8729	0.363*	0.52
C23	0.7827 (4)	0.6700 (3)	0.4173 (3)	0.1040 (11)	
H23A	0.8301	0.7500	0.3974	0.125*	
H23B	0.8116	0.6138	0.3674	0.125*	
C24	0.6236 (4)	0.6580 (3)	0.4021 (3)	0.1162 (12)	
H24A	0.5943	0.7109	0.4553	0.139*	
H24B	0.5764	0.5767	0.4180	0.139*	
C25	0.5719 (4)	0.6892 (4)	0.2796 (3)	0.1317 (13)	
H25A	0.4689	0.6902	0.2780	0.158*	
H25B	0.6225	0.7701	0.2653	0.158*	
C26	0.5905 (5)	0.6148 (4)	0.1874 (4)	0.1422 (14)	
H26A	0.5425	0.5329	0.2005	0.171*	
H26B	0.6937	0.6168	0.1839	0.171*	
C27	0.5287 (5)	0.6542 (4)	0.0760 (3)	0.1611 (17)	
H27A	0.4270	0.6538	0.0796	0.242*	
H27B	0.5400	0.6004	0.0173	0.242*	
H27C	0.5798	0.7335	0.0606	0.242*	
N1	0.7605 (3)	0.4446 (2)	0.49258 (18)	0.0801 (7)	
N2	0.8658 (3)	0.4919 (2)	0.66852 (19)	0.0875 (7)	
N3	0.8318 (3)	0.6467 (2)	0.5371 (2)	0.0950 (8)	
01	0.3769 (3)	0.06040 (19)	0.10780 (19)	0.1136 (8)	
02	0.8609 (3)	0.30362 (19)	0.73927 (19)	0.1186 (8)	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.166 (4)	0.101 (3)	0.138 (3)	-0.005 (3)	-0.017 (3)	-0.050 (2)
C2	0.091 (2)	0.080 (2)	0.087 (2)	0.0093 (19)	0.0058 (19)	-0.0139 (19)
C3	0.111 (3)	0.070 (2)	0.110 (3)	0.0121 (19)	0.002 (2)	-0.021 (2)
C4	0.107 (3)	0.081 (2)	0.079 (2)	0.0159 (18)	-0.0001 (19)	-0.0028 (16)
C5	0.111 (3)	0.069 (2)	0.105 (3)	0.0264 (18)	0.000 (2)	-0.0029 (17)
C6	0.101 (2)	0.0652 (18)	0.079 (2)	0.0088 (17)	0.0034 (18)	-0.0037 (16)
C7	0.078 (2)	0.0677 (18)	0.074 (2)	0.0152 (16)	0.0118 (16)	-0.0046 (15)
C8	0.095 (2)	0.076 (2)	0.0747 (19)	0.0267 (17)	0.0086 (17)	0.0047 (15)
C9	0.085 (2)	0.074 (2)	0.0669 (18)	0.0194 (16)	0.0024 (16)	-0.0043 (15)
C10	0.103 (2)	0.080 (2)	0.073 (2)	0.0230 (19)	-0.0073 (18)	-0.0016 (17)
C11	0.102 (2)	0.070 (2)	0.0651 (19)	0.0179 (17)	-0.0036 (17)	-0.0034 (16)
C12	0.080 (2)	0.083 (2)	0.0642 (19)	0.0133 (18)	-0.0056 (17)	-0.0074 (15)
C13	0.098 (3)	0.143 (3)	0.128 (3)	-0.005 (2)	0.032 (3)	-0.053 (3)
C14	0.182 (5)	0.133 (3)	0.109 (3)	-0.027 (3)	0.066 (3)	-0.044 (3)
C15	0.174 (5)	0.110 (3)	0.071 (3)	-0.011 (3)	-0.018 (3)	-0.005 (2)

C16	0.115 (3)	0.141 (3)	0.123 (4)	0.021 (3)	-0.028 (3)	-0.028 (3)
C17	0.091 (3)	0.113 (3)	0.104 (3)	0.016 (2)	-0.002 (2)	-0.030 (2)
C18'	0.096 (5)	0.085 (5)	0.083 (4)	0.027 (4)	0.006 (4)	-0.003 (4)
C19'	0.132 (7)	0.102 (6)	0.139 (7)	0.024 (6)	0.000 (6)	-0.019 (5)
C20'	0.140 (7)	0.104 (6)	0.147 (7)	-0.014 (5)	-0.015 (6)	-0.067 (5)
C21'	0.149 (10)	0.233 (14)	0.144 (11)	0.007 (10)	0.032 (9)	0.084 (11)
C22'	0.146 (9)	0.113 (8)	0.106 (7)	0.003 (7)	-0.023 (6)	-0.074 (7)
C18	0.118 (6)	0.084 (4)	0.085 (4)	0.005 (4)	0.006 (4)	-0.008 (4)
C19	0.149 (7)	0.081 (5)	0.133 (6)	0.008 (5)	0.021 (5)	-0.049 (4)
C20	0.209 (12)	0.205 (13)	0.206 (13)	0.041 (8)	0.050 (9)	-0.004 (9)
C21	0.229 (10)	0.221 (10)	0.167 (9)	0.020 (8)	0.049 (8)	-0.038 (8)
C22	0.228 (16)	0.228 (15)	0.253 (16)	-0.017 (11)	0.079 (12)	0.059 (12)
C23	0.129 (3)	0.075 (2)	0.106 (3)	0.016 (2)	0.016 (2)	0.0037 (17)
C24	0.108 (3)	0.117 (3)	0.128 (3)	0.035 (2)	0.008 (3)	0.005 (2)
C25	0.130 (3)	0.153 (4)	0.119 (3)	0.050 (3)	-0.003 (3)	0.021 (3)
C26	0.168 (4)	0.136 (3)	0.123 (3)	0.041 (3)	-0.012 (3)	-0.014 (3)
C27	0.207 (5)	0.170 (4)	0.098 (3)	0.040 (3)	-0.040 (3)	0.008 (3)
N1	0.1053 (19)	0.0673 (15)	0.0648 (14)	0.0161 (13)	-0.0039 (13)	-0.0020 (13)
N2	0.113 (2)	0.0755 (17)	0.0702 (16)	0.0211 (14)	-0.0194 (14)	-0.0090 (13)
N3	0.136 (2)	0.0739 (18)	0.0695 (17)	0.0192 (16)	-0.0171 (15)	-0.0067 (13)
O1	0.1251 (19)	0.1029 (17)	0.1018 (17)	0.0084 (14)	-0.0134 (14)	-0.0250 (13)
02	0.169 (2)	0.0942 (16)	0.0889 (16)	0.0336 (15)	-0.0292 (15)	0.0069 (13)

Geometric parameters (Å, °)

C1—O1	1.427 (3)	C19'—H19D	0.9700
C1—H1A	0.9600	C20'—C21'	1.485 (8)
C1—H1B	0.9600	C20'—H20C	0.9700
C1—H1C	0.9600	C20'—H20D	0.9700
C2—C3	1.359 (4)	C21'—C22'	1.511 (8)
C2—O1	1.370 (3)	C21'—H21C	0.9700
C2—C4	1.382 (4)	C21'—H21D	0.9700
C3—C5	1.373 (4)	C22'—H22D	0.9600
С3—Н3	0.9300	C22'—H22E	0.9600
C4—C6	1.376 (4)	C22'—H22F	0.9600
C4—H4	0.9300	C18—C19	1.424 (7)
С5—С7	1.389 (4)	C18—N3	1.469 (6)
С5—Н5	0.9300	C18—H18A	0.9700
C6—C7	1.389 (4)	C18—H18B	0.9700
С6—Н6	0.9300	C19—C20	1.404 (6)
С7—С8	1.457 (4)	С19—Н19А	0.9700
C8—C9	1.351 (3)	С19—Н19В	0.9700
С8—Н8	0.9300	C20—C21	1.387 (8)
C9—N1	1.385 (3)	C20—H20A	0.9700
C9—C10	1.470 (4)	C20—H20B	0.9700
C10—O2	1.213 (3)	C21—C22	1.419 (8)
C10—N2	1.392 (3)	C21—H21A	0.9700
C11—N1	1.302 (3)	C21—H21B	0.9700
C11—N3	1.343 (3)	C22—H22A	0.9600

C11—N2	1.398 (3)	C22—H22B	0.9600
C12—C13	1.348 (4)	С22—Н22С	0.9600
C12—C17	1.359 (4)	C23—C24	1.471 (4)
C12—N2	1.429 (3)	C23—N3	1.508 (4)
C13—C14	1.398 (5)	C23—H23A	0.9700
С13—Н13	0.9300	C23—H23B	0.9700
C14—C15	1.336 (5)	C24—C25	1.569 (5)
C14—H14	0.9300	C24—H24A	0.9700
C15—C16	1.344 (5)	C24—H24B	0.9700
C15—H15	0.9300	C25—C26	1.434 (5)
C16—C17	1.353 (4)	C25—H25A	0.9700
C16—H16	0.9300	С25—Н25В	0.9700
С17—Н17	0.9300	C26—C27	1.515 (5)
C18'—N3	1.488 (6)	C26—H26A	0.9700
C18'—C19'	1.503 (7)	C26—H26B	0.9700
C18'—H18C	0.9700	C27—H27A	0.9600
C18'—H18D	0.9700	С27—Н27В	0.9600
C19'—C20'	1.487 (7)	С27—Н27С	0.9600
C19'—H19C	0.9700		
O1—C1—H1A	109.5	C20'—C21'—H21D	108.1
O1—C1—H1B	109.5	C22'—C21'—H21D	108.1
H1A—C1—H1B	109.5	H21C-C21'-H21D	107.3
01—C1—H1C	109.5	C21'—C22'—H22D	109.5
H1A—C1—H1C	109.5	C21'—C22'—H22E	109.5
H1B—C1—H1C	109.5	H22D—C22'—H22E	109.5
C3—C2—O1	124.9 (3)	C21'—C22'—H22F	109.5
C3—C2—C4	119.4 (3)	H22D—C22'—H22F	109.5
O1—C2—C4	115.7 (3)	H22E—C22'—H22F	109.5
C2—C3—C5	119.8 (3)	C19—C18—N3	114.4 (6)
С2—С3—Н3	120.1	C19—C18—H18A	108.7
С5—С3—Н3	120.1	N3—C18—H18A	108.7
C6—C4—C2	120.6 (3)	C19—C18—H18B	108.7
C6—C4—H4	119.7	N3—C18—H18B	108.7
C2—C4—H4	119.7	H18A—C18—H18B	107.6
C3—C5—C7	122.6 (3)	C20-C19-C18	131.3 (7)
С3—С5—Н5	118.7	С20—С19—Н19А	104.4
С7—С5—Н5	118.7	С18—С19—Н19А	104.4
C4—C6—C7	121.1 (3)	С20—С19—Н19В	104.4
С4—С6—Н6	119.5	C18—C19—H19B	104.4
С7—С6—Н6	119.5	H19A—C19—H19B	105.6
C6—C7—C5	116.5 (3)	C21—C20—C19	135.7 (9)
C6—C7—C8	123.3 (3)	C21—C20—H20A	103.3
C5—C7—C8	120.2 (3)	C19—C20—H20A	103.3
C9—C8—C7	128.9 (3)	C21—C20—H20B	103.3
С9—С8—Н8	115.5	С19—С20—Н20В	103.3
С7—С8—Н8	115.5	H20A—C20—H20B	105.2
C8—C9—N1	128.3 (3)	C20—C21—C22	131.1 (12)
C8—C9—C10	122.5 (3)	C20—C21—H21A	104.5
N1—C9—C10	109.1 (2)	C22—C21—H21A	104.5

O2—C10—N2	124.6 (3)	C20—C21—H21B	104.5
O2—C10—C9	131.3 (3)	C22—C21—H21B	104.5
N2—C10—C9	104.0 (3)	H21A—C21—H21B	105.6
N1—C11—N3	122.3 (3)	C24—C23—N3	111.1 (3)
N1—C11—N2	113.7 (2)	С24—С23—Н23А	109.4
N3—C11—N2	124.0 (3)	N3—C23—H23A	109.4
C13—C12—C17	120.0 (3)	С24—С23—Н23В	109.4
C13—C12—N2	120.7 (3)	N3—C23—H23B	109.4
C17—C12—N2	119.2 (3)	H23A—C23—H23B	108.0
C12—C13—C14	119.4 (4)	C23—C24—C25	111.7 (3)
C12—C13—H13	120.3	C23—C24—H24A	109.3
C14—C13—H13	120.3	C25—C24—H24A	109.3
C15—C14—C13	119.7 (4)	C23—C24—H24B	109.3
C15—C14—H14	120.1	C25—C24—H24B	109.3
C13—C14—H14	120.1	H24A—C24—H24B	107.9
C14—C15—C16	120.1 (4)	C26—C25—C24	119.1 (3)
C14—C15—H15	120.0	С26—С25—Н25А	107.5
С16—С15—Н15	120.0	C24—C25—H25A	107.5
C15—C16—C17	121.0 (4)	С26—С25—Н25В	107.5
С15—С16—Н16	119.5	C24—C25—H25B	107.5
C17—C16—H16	119.5	H25A—C25—H25B	107.0
C16—C17—C12	119.7 (3)	C25—C26—C27	112.2 (4)
С16—С17—Н17	120.1	C25—C26—H26A	109.2
C12—C17—H17	120.1	C27—C26—H26A	109.2
N3—C18'—C19'	107.7 (6)	C25—C26—H26B	109.2
N3—C18'—H18C	110.2	C27—C26—H26B	109.2
C19'—C18'—H18C	110.2	H26A—C26—H26B	107.9
N3—C18'—H18D	110.2	C26—C27—H27A	109.5
C19'—C18'—H18D	110.2	C26—C27—H27B	109.5
H18C-C18'-H18D	108.5	H27A—C27—H27B	109.5
C20'-C19'-C18'	119 3 (8)	C26—C27—H27C	109.5
C20'-C19'-H19C	107.5	$H_{27A} - C_{27} - H_{27C}$	109.5
C18'—C19'—H19C	107.5	H27B-C27-H27C	109.5
C20'—C19'—H19D	107.5	C11—N1—C9	106.4 (2)
C18'—C19'—H19D	107.5	C10 - N2 - C11	106.7 (2)
H19C-C19'-H19D	107.0	C10 - N2 - C12	121.7(2)
C21'-C20'-C19'	118 4 (8)	C11 - N2 - C12	121.7(2) 131.5(2)
$C_{21} - C_{20} - H_{20}$	107.7	$C_{11} - N_{3} - C_{18}$	128.1(4)
C19'—C20'—H20C	107.7	C11 - N3 - C18'	123.8(3)
C21'-C20'-H20D	107.7	C18—N3—C18'	43.8 (3)
$C_{19} - C_{20} - H_{20D}$	107.7	$C_{11} - N_{3} - C_{23}$	115.7(2)
H20C-C20'-H20D	107.1	C18 - N3 - C23	113.7(2) 111.2(3)
$C_{20}'-C_{21}'-C_{22}'$	116.6 (9)	C18' - N3 - C23	1153(3)
$C_{20} = C_{21} = C_{22}$	108.1	$C_{2} = 0_{1} = C_{1}$	113.3(3) 118.0(3)
$C_{22}'-C_{21}'-H_{21}C$	108.1		110.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-170 2 (2)	C24 C25 C24 C27	177 A(A)
01 - 02 - 03 - 03	-1/9.5(5)	124 - 123 - 120 - 127	1/7.4(4) -170.0(2)
	-0.9(3)	$N_{2} = C_{11} = N_{1} = C_{2}$	-1/9.9 (3) 1 2 (2)
-1 - 2 - 4 - 6	1.4(3)	N2 = C11 = N1 = C11	1.5 (3)
01-02-04-06	1/9.9 (3)	Co-C9-NI-CII	1/5.6 (3)

C2—C3—C5—C7	-0.1 (5)	C10—C9—N1—C11	-1.7 (3)		
C2—C4—C6—C7	-0.9 (4)	O2-C10-N2-C11	-179.8 (3)		
C4—C6—C7—C5	-0.1 (4)	C9-C10-N2-C11	-0.7 (3)		
C4—C6—C7—C8	-177.8 (3)	O2-C10-N2-C12	-1.7 (5)		
C3—C5—C7—C6	0.6 (4)	C9-C10-N2-C12	177.3 (3)		
C3—C5—C7—C8	178.3 (3)	N1-C11-N2-C10	-0.3 (3)		
C6—C7—C8—C9	-6.6 (5)	N3-C11-N2-C10	-179.1 (3)		
C5—C7—C8—C9	175.8 (3)	N1-C11-N2-C12	-178.1 (3)		
C7—C8—C9—N1	-2.8 (5)	N3-C11-N2-C12	3.1 (5)		
C7—C8—C9—C10	174.1 (3)	C13—C12—N2—C10	-86.3 (4)		
C8—C9—C10—O2	3.0 (5)	C17-C12-N2-C10	90.5 (4)		
N1—C9—C10—O2	-179.5 (3)	C13—C12—N2—C11	91.3 (4)		
C8—C9—C10—N2	-176.0 (2)	C17—C12—N2—C11	-92.0 (4)		
N1	1.5 (3)	N1-C11-N3-C18	-155.0 (4)		
C17-C12-C13-C14	-0.2 (5)	N2-C11-N3-C18	23.7 (6)		
N2-C12-C13-C14	176.5 (3)	N1-C11-N3-C18'	150.4 (4)		
C12-C13-C14-C15	-0.3 (6)	N2-C11-N3-C18'	-30.9 (5)		
C13-C14-C15-C16	1.9 (7)	N1-C11-N3-C23	-2.8 (4)		
C14-C15-C16-C17	-3.1 (7)	N2-C11-N3-C23	175.9 (3)		
C15-C16-C17-C12	2.5 (6)	C19-C18-N3-C11	-125.9 (6)		
C13-C12-C17-C16	-0.9 (5)	C19-C18-N3-C18'	-24.2 (6)		
N2-C12-C17-C16	-177.6 (3)	C19—C18—N3—C23	80.8 (7)		
N3—C18'—C19'—C20'	165.8 (7)	C19'—C18'—N3—C11	119.8 (6)		
C18'—C19'—C20'—C21'	74.3 (14)	C19'—C18'—N3—C18	7.8 (6)		
C19'—C20'—C21'—C22'	158.6 (11)	C19'—C18'—N3—C23	-87.0 (6)		
N3-C18-C19-C20	162.9 (15)	C24—C23—N3—C11	81.5 (3)		
C18-C19-C20-C21	7(4)	C24—C23—N3—C18	-121.7 (4)		
C19—C20—C21—C22	-171.2 (18)	C24—C23—N3—C18'	-73.9 (4)		
N3—C23—C24—C25	176.7 (3)	C3—C2—O1—C1	-1.5 (5)		
C23—C24—C25—C26	65.0 (5)	C4—C2—O1—C1	180.0 (3)		
Hydrogen-bond geometry (\mathring{A}, \circ)					

D—H··· A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
C6—H6…N1	0.93	2.39	3.037 (4)	127

